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This paper characterizes the way three preservice mathematics teachers (PSTs) understand and 
quantify the rate of change as they model the link between carbon dioxide (CO2) pollution and global 
warming. I also discuss what PSTs learned about the concept of forcing by CO2, a key metric of 
global warming. The PSTs completed a mathematical task during an individual, task-based 
interview. The study revealed three levels of understanding of the rate of change in relation to 
quantitative operations (comparison versus coordination), graphing activity (pointwise versus 
smooth and continuous), and concavity (discovering versus anticipating). Depending on their level of 
understanding, PSTs could imagine the rate of change changing discretely or continuously with 
respect to an independent variable. PSTs also learn four central ideas regarding the forcing by CO2 
as a result of working on the task. 
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Introduction 
Climate change is a pressing issue for this century with potentially irreversible and disastrous 

consequences for social and natural systems (Intergovernmental Panel on Climate Change [IPCC], 
2013). The United Nations has called for incorporating climate change education in schools 
(Anderson, 2012; Global Education Monitoring [GEM], 2016). Since students have different 
interests and learning abilities, teachers from all disciplines can contribute to climate change 
education (McKeown & Hopkins, 2010). Mathematics teachers can play a central role in this 
endeavor since mathematical modeling represents a promising approach for connecting mathematical 
learning and climate change education (González, 2018, 2019; Barwell & Suurtamm, 2011; Barwell, 
2013a, 2013b). Teachers, however, need to be prepared for the challenge, which requires teacher 
education programs to prepare preservice mathematics teachers (PSTs) for incorporating climate 
change into their instruction. 

Lambert and Bleicher (2013) have identified two key concepts from climate sciences that preservice 
science teachers need to learn about in order to understand climate change: (a) the Earth’s energy 
balance, and (b) the link between carbon dioxide (CO2) pollution and global warming. It is 
reasonable to extend this premise to PSTs since they are less familiar with concepts from climate 
science than preservice science teachers. Therefore, a starting point may involve studying the energy 
balance and the link between CO2 and global warming as dynamic situations where two (or more) 
variables change together (covariation). In this paper, I characterize, from a covariational reasoning 
perspective, the way three PSTs think about the rate of change as they model the link between CO2 
pollution and global warming. I also discuss what PSTs learned about the concept of Forcing by 
CO2, a key metric for assessing the impact of CO2 pollution on global warming. 

Conceptual Framework 
Covariational reasoning refers to “the cognitive activities involved in coordinating two varying 

quantities while attending to the ways in which they change in relation to each other” (Carlson, 
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Jacobs, Coe, Larsen, & Hsu, 2002, p. 354). Johnson (2015) distinguished two categories of 
quantitative operations that students use when reasoning about covariation and rate of change: 
operations of comparison (QO-Comp) and operations of coordination (QO-Coord). QO-Comp 
involves conceiving a quantity’s variation in chunks and produces associations of amounts of change 
between covarying quantities. The amounts of change in y are compared for (not necessarily equal) 
amounts of change in x in order to make viable claims about the rate of change. QO-Coord involved 
conceiving a quantity’s variation smoothly and produces relationships between covarying quantities. 
The relationships are coordinated through division to create a new quantity measuring degrees of 
change that supports accurate claims about the rate of change. Carlson and colleagues’ concept of 
covariational reasoning and Johnson’s (2015) QO-Comp and QO-Coord informed the discussion 
about the ways PSTs understood and quantified the rate of change. 

Methodology 
This paper is part of a larger study that investigated how PSTs make sense of simple mathematical 

models of climate change. Three secondary PSTs ⎯hereafter Jodi, Pam, and Kris⎯ enrolled in a 
mathematics education program at a large Southeastern university in the United States participated in 
that larger study. Here, I focus on their responses to one task of the larger study: the Forcing by CO2 
Task. 
The Forcing by CO2 Task 

The Erath’s energy balance accounts for all heat flows (in Joules per second per square meters, or 
Js−

1m−
2) that there exit in the continuous heat exchange between the sun, the planet’s surface, and the 

atmosphere (Figure 1a). The sun warms up the planet’s surface at an approximately constant heat 
flow S. As the surface heats up, it radiates heat to the atmosphere (R). A small fraction of it escapes 
to space (L), but the majority (B) is absorbed by greenhouse gases (GHG) in the atmosphere. The 
atmosphere then re-radiates a fraction of the absorbed heat back to the surface (A), further increasing 
its temperature. The heat flow A represents the magnitude of the greenhouse effect, which enhances 
the planet’s mean surface temperature. The energy balance shows that changes in the concentration 
of GHG result in changes in the planet’s mean surface temperature. The Fording by CO2 Task 
(Figure 1b) focuses on carbon dioxide (CO2) because it is a key driver of global warming, as human 
activity produces large amounts of it by burning fossil fuels (IPCC, 2013). 

The task defines the forcing by CO2 as F = (S + A) – R, which is a measure of the warming effect 
over the planet’s surface produced by an instantaneous increase in the atmospheric CO2 
concentration, C, (in parts per million, or ppm). If C increases, then the atmosphere can absorb more 
heat and, consequently, can radiate more heat towards the surface (A increases). Thus, as C increases, 
so does F, but !"#!→! ! ! = 45 since S and R remain constant, which puts a cap on the growth of 
A and, consequently, on the growth of F. This suggests that F increases asymptotically towards 45 
Js−

1m−
2 as C increases, producing an increasing, concave-downward graph. 

Data Collection 
Each PST completed the task during an 80-minute long, individual, task-based interview (Goldin, 

2000). The interview followed a semi-structured format and was video recorded and transcribed for 
analysis. I started the interview by showing each PST a 7-minute long video introducing the concepts 
of energy balance and greenhouse effect. After the video, the PST and I had a Q&A session in which 
I summarized the central ideas regarding the energy balance and the greenhouse effect and clarified 
any questions they may have had about those ideas. The video and Q&A session were meant to 
provide PSTs with a basic knowledge regarding the energy balance and the greenhouse effect so that 
they could start working on the task. 
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Figure 1. (a) the Earth Energy Balance (Left) and (b) the Forcing by CO2 Task (Right). 

 
Once the Q&A session ended, PSTs were given the Forcing by CO2 Task along with a diagram of 

the energy balance (Figure 1a). The interview had four distinct parts. First, PSTs were asked to think 
about how F changes as C increases by examining the diagram of the energy balance. The diagram 
had no values for the heat flows to encourage PSTs to imagine changes happening dynamically. 
When PSTs experienced difficulties, I gave them initial values for the heat flows so that they could 
find F-values by using the given definition F = (S + A) – R. Second, PSTs had to think about two 
theoretical scenarios Scenario 1 described a completely transparent atmosphere (an atmosphere that 
absorbs no surface heat) and was assumed to happen for C = 0 ppm. Scenario 1 corresponded to the 
minimum forcing (F-value) for the given initial values of the heat flows. Scenario 2 described a 
completely opaque atmosphere (an atmosphere that absorbs all surface heat) and was assumed to 
happen for C = 1,000,000 ppm (highest concentration possible). Scenario 2 corresponded to the 
maximum forcing (F-value). The PSTs were expected to imagine how F increased from Scenario 1 
to Scenario 2 and anticipate the graph’s concavity. Third, I introduced the Excel Simulation, a 
spreadsheet that allowed PSTs to enter C-values and obtain the corresponding F-values. The Excel 
Simulation assisted PSTs in examining and quantifying changes in F for corresponding changes in C 
and evaluating the accuracy of their graphs. Finally, I asked PSTs to draw the graph of the Sensitivity 
of F to C, or the rate of change of F with respect to C. Here, I examined the PSTs’ ability to conceive 
the rate of change as a measure of sensitivity and as a quantity in and of itself that covaried with C. 
Data Analysis 

Interview videos and transcripts were analyzed through the Framework Analysis (FA) method 
(Ward, Furber, Tierney, & Swallow, 2013). I watched all videos and divided them into smaller 
episodes. For each episode, I took notes regarding PSTs’ views of forcing, covariational reasoning, 
and understandings of rate of change. I used the notes to develop an analytic framework, which 
included six codes about forcing, eight codes regarding covariation, and five codes about rate of 
change. The analytic framework was applied back to the data to code all episodes. Next, I looked for 
patterns across the participants’ responses and categorized codes into themes. The patterns and 
themes helped me characterize the way PSTs understand the forcing and the rate of change. 
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Results 
The Direction of Change of the Forcing 

During the first part of the interview, PSTs looked at the diagram (Figure 1a) and identified the heat 
flows that changed when C increased and those that remained constant (i.e., unaffected by changes in 
C). In doing so, PSTs thought about how an increment in C influences the atmosphere’s capacity to 
absorb and radiate heat (changes in B and A, respectively), which represents a foundational idea to 
understand the forcing by CO2. PSTs inferred the direction in which F was changing by utilizing the 
given definition F = (S + A) – R. They noticed that an increase in C resulted in an increase in A, while 
the heat flows S and R remained constant, which meant that F increased when C increased. For 
instance, Kris stated “if B increases, then A is going to increase, and S and R stay the same [pauses]. 
So, [F] is going to be positive”. 

During the second part of the interview, PSTs thought about Scenario 1 and Scenario 2. They 
realized that the scenarios represented the minimum and maximum forcing, respectively. For 
instance, Jodi described Scenario 2 as follows: 

A would be 390 over 2, which is going to be [uses calculator]. So, A is 195, and we would need, we 
would want S to equal A [writes S = A]. But, since 240 is greater than 195, we would need to add [F] 
[writes 240 = 195 + F]. And, that would make F = 45. In the case we add more CO2 to the 
atmosphere and L no longer is emitted 

The PSTs assumed Scenario 1 occurred for C = 0 and found that F = (240 + 0) – 390 = −150 
Js─1m─2. For Scenario 2, they assumed it occurred for C = CM and had F = (240 + 195) – 390 = 45 
Js─1m─2. They represented these scenarios in the coordinate plane by the points (0 , –150) and (CM , 
45), respectively. Then, Pam and Jodi drew a line incident to both points as the graph of F (Figure 2), 
while Kris could not decide whether the graph should be an increasing, concave-downward curve or 
an increasing line. She stated that a line “would imply that it is like a constant rate of change with C 
and [F].” Kris’s understanding of rate of change appeared more advanced than Jodi and Pam’s since 
it involved the realization that the shape of a graph is related to the variation in the rate of change. 
The Rate of Change of the Forcing 

During the third part of the interview, the Excel Simulation was introduced. Here, the PSTs also 
learned that F follows the rule “F increases by 4 Js−

1m−
2 every time C doubles1” which is widely 

accepted among the experts (Huang & Shahabadi, 2014; IPCC, 2013). 

 
Figure 2. (a) Pam’s linear graph of F (left) and (b) Jodi’s linear graph of F (right). 

 
                                                             
1 A more real estimate is about 3.7 Js−

1m−
2 (IPCC, 2013), but I rounded it to 4 Js−

1m−
2 for simplicity. 
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PSTs were asked to find out whether F was a linear or a nonlinear function of C. All three PSTs 
determined F-values corresponding to equally spaced C-values. Then, they compared the differences 
∆!! and noticed they were decreasing, discarding the linear model. After that, PSTs demonstrated 
three different ways of quantifying the rate of change and understanding its connection to the 
concavity of the graph of F, as they drew new versions of that graph. Pam did not anticipate the 
concavity of the graph from interpreting the decreasing increments ∆!!, suggesting she did not see 
them as an indicator of concavity or a measure of the variation in the degree of change of F with 
respect to C. Instead, Pam used the rule “F increases by 4 Js−

1m−
2 when C doubles” to coordinate C-

values with F-values, creating a discrete collection of pairs (C , F) and drawing the graph of F using 
a pointwise approach (Figure 3a). When finished, Pam said “Oh! This looks like a logarithmic thing I 
hate”, suggesting she did not anticipate the concavity of her graph as much as she discovered it. 

In contrast, Jodi anticipated the concavity of F by interpreting the decreasing increments ∆!! as 
indicating that F increased less and less as C increased. 

So, the relationship is not linear because the change in y over the change in x is not equal between 
two points. But, I see that, as we increase [C], the change in F is less. So, we may end up getting a 
function that looks like that [draws a tiny, increasing, concave-down curve] 

Although Jodi anticipated the concavity, she still used the Excel Simulation to create a discrete 
collection of pairs (C , F). She then used a pointwise approach to draw her final version of the graph 
of F. This is an interesting behavior because it suggests that she did not have complete confidence on 
her interpretation of the differences ∆!! in terms of concavity. A possible explanation is that her 
understanding of those differences as an indicator of concavity and a measure of the degree of 
change of F may have been still stabilizing in her mind. 

Finally, Kris anticipated the concavity of F by interpreting the decreasing average rate of change of 
F. Her interpretation confirmed her previous suspicion that the graph was an increasing, concave-
downward curve. 

 
K: That is really weird, how like, if you look at the change from [C = 0] to [C = 1] [pauses] 
I: There is a big jump 
K: Yeah, like over a hundred (F increases more than 100 Js−

1m−
2). And then you get from [C = 10] to 

[C = 20] and it is only like four (F increases by approximately 4 Js−
1m−

2). So like, for every 
change [of] 2.5 [in C], [F] changes like one-ish. So that is what I was thinking about when I said 
that [the graph] may look like this [draws an increasing, concave-downward curve] 

 
Kris’s way of quantifying the average rate of change of F supported both anticipating concavity and 

drawing the graph of F in a smooth and continuous way (Figure 3b). Also, Kris’s use of ratios 
represents a step forward in the formalization of the concept of rate of change in relation to the 
comparison of the differences ∆!! for equal increments ∆!. 
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Figure 3. (a) Pam’s final graph of F (Left) and (b) Kris’s final graph of F (Right). 

 
The Sensitivity of F to C 

Pam and Kris participated in the fourth part of the interview involving the Sensitivity of F to C (i.e., 
the rate of change of F with respect to C). Unfortunately, Jodi did not have time to participate during 
that last part. The analysis of Pam and Kris’s responses suggest two different ways of quantifying the 
sensitivity of F to C and two different ways of conceiving that sensitivity covarying with C. 

Pam quantified the sensitivity by the steepness of the graph of F corresponding to unequally-spaced 
values of C (each interval was twice as long as the previous one). She then attended to the variation 
in the steepness as she moved from one interval of C to the next. She translated that variation into 
degrees of sensitivity (e.g., more or less sensitive). 

P: So, it is not super sensitive here [uses two fingers to indicate the steepness of the graph of F for 
2224 ≤ C ≤ 4448] 

I: Could you tell me a little bit more about how you figured that out by looking at this graph [point 
at her graph of F]? 

P: Here [points at the interval [0 , 278]], [C] increased a little bit, and the force [sic] went crazy 
[moves her index finger up quickly to indicate a large increase in F], I mean compare to 
everything else, it went higher. Here [points at the interval [278 , 556]], [C] increased a little bit 
more, and the sensitivity didn’t increase that much. So, [F] is not as sensitive when there is more 
concentration [moves her fingers to the right to indicate the increase in C] 

The transcript above shows how Pam imagined the steepness decreasing as she moved from one 
interval of C to the next. This helped her identify the direction of change of the sensitivity (i.e., it 
decreases as C increases). However, she did not notice that the decline in steepness slowed down as 
C increased, hence she could not anticipate the concavity of the graph of the sensitivity. In order to 
draw the graph, Pam first found four values of the average rate of change of F: 4/278, 4/556, 4/1112, 
and 4/2224, corresponding to the intervals [278 , 556], [556 , 1112], [1112 , 2224], and [2224 , 
4448], respectively. Then, Pam notice that “my concentration increases by double, and my sensitivity 
goes down by half [writes ‘concentration × 2, sensitivity ÷ 2’]”. She used that rule to create the 
discrete collection of pairs (278 , 1/2 F’(0)), (556 , 1/4 F’(0)), (1112 , 1/8 F’(0)), and (2224 , 1/16 
F’(0)), where F’ represents the sensitivity of F to C. Then, Pam drew the graph of the sensitivity with 
a pointwise approach (Figure 4a). This suggests she discovered the concavity of the graph of the 
sensitivity rather than anticipating it. 

In contrast, Kris’s ways of quantifying the sensitivity involved thinking in terms of how resistant F 
was to changes in C, as indicated by the graph of F. When I asked her how the sensitivity changes as 
C increases, Kris replied “sensitivity decreases because [F] is more resistant to a change in C”. She 
then drew a decreasing, concave-upward graph of the sensitivity in a smooth and continuous way 
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(Figure 4b). Since she did not justify the concavity of her graph, I asked her to elaborate on how she 
figured the concavity out, to which she replied: 

As we increase C by equal amounts each time [uses two fingers to indicate equal increments in C], 
F is increasing by smaller, and smaller, and smaller amounts [uses two fingers to indicate 
decreasing increments in F]. So, it is becoming less sensitive to the changes in C. Because it takes a 
bigger change in C to equal the equal change in F. 

Because one must double C to create the same increment in F, she claimed that “the sensitivity 
decreases at a decreasing rate”. Kris’s quantification of the sensitivity allowed her to anticipate 
concavity, draw an accurate graph, and make viable claims about the rate of change of the sensitivity. 
This suggests that Kris not only reasoned about the rate of change of F, but also about the rate of 
change of the rate of change of F, which is foundational to understand second derivative in Calculus. 

 
Figure 4. (a) Pam’s graph of sensitivity (Left) and (b) Kris’s graph of sensitivity (Right). 

 
Finally, by thinking about the sensitivity of F to C, Pam and Kris learned that the forcing by CO2 

becomes less sensitive to changes in C as C increases. This is another characteristic of the forcing 
widely accepted among the experts (Huang & Shahabadi, 2014; IPCC, 2013). 

Conclusions 
The study revealed three different levels of understanding of the rate of change among the PSTs. 

Level 1 is represented by Pam; she did not demonstrate quantitative operations related to reasoning 
about the rate of change F. She created a discrete collection of pairs (C , F) and used  a pointwise 
approach to draw the graph of F. The concavity was discovered after finishing the graph and no 
viable claims about the rate of change were made. Level 2 is represented by Jodi; she associated 
changes ∆!!  with equal changes ∆!  and compared those associations (QO-Comp) to anticipate 
concavity and make viable claims about the rate of change. She, however, created a discrete 
collection of pairs (C , F) and used a pointwise approach to draw the graph of F. This suggests that 
her understanding of the relationship between a graph’s shape and the rate of change was not 
completely stable in her mind. Level 3 is represented by Kris; she coordinated changes ∆!! with 
changes ∆! through division (QO-Coord) to create a single quantity that allowed her to anticipate 
concavity, make viable claims about the rate of change, and draw an accurate graph of F. 

The analysis of Pam and Kris’s responses suggest two different ways of quantifying the sensitivity 
of F to C and two different ways of conceiving covariation between the sensitivity and C. Pam 
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quantified the sensitivity by the steepness of the graph of F corresponding to an interval of C. This 
allowed her to identify the direction of change of the sensitivity (i.e., it decreases when C increases). 
Then, she compared (QO-Comp) the values of the average rate of change of F for consecutive, 
unequally-long intervals of C (each interval was twice as long as the previous one) in order to define 
a correspondence rule between values of sensitivity and values of C: the sensitivity halves every time 
C doubles. Pam’s QO-Comp allowed her to draw an accurate graph but did not support the ability to 
make claims about the rate of change of the sensitivity or anticipate concavity. In contrast, Kris 
quantified the sensitivity as the resistance of F to changes in C, as defined by the graph of F. This 
allowed her to identify the direction of change of the sensitivity (i.e., it decreases when C increases). 
Then, she coordinated (QO-Coord) changes in resistance with changes in C in order to draw an 
accurate graph of the sensitivity in a smooth and continuous way, make claims about the rate of 
change of the sensitivity, and anticipate concavity. Most interestingly, Kris’s QO-Coord supported 
reasoning about the rate of change of the rate of change of F, a key idea to understand the second 
derivative in Calculus (Johnson, 2012). 

Finally, the study also shows that PSTs learned four important aspects about the forcing by CO2: (1) 
an increase in atmospheric CO2 concentration enhances the atmosphere’s capacity to absorb and 
radiate heat, which further warms the planet’s surface; (2) the forcing has a theoretical minimum 
value, when the atmosphere absorbs no surface heat, and a theoretical maximum value, when the 
atmosphere absorbs all surface heat; (3) the doubling CO2 rule for the forcing (F increases by 4 
Js−

1m−
2 every time C doubles); and (4) the forcing by CO2 becomes less sensitive to changes in C as C 

increases. 
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